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Abstract—By including credible data extracted from the Twit-
ter social networking service, the study of earthquakes and
tsunamis is legitimately transformed into a Big Data Analytics
problem. The challenge of establishing geophysically credible
tweets is considered first through a combination of graph
analytics and knowledge representation, and subsequently via
Machine Learning. Although there remains cause for optimism in
augmenting scientific data with that derived from social network-
ing, further research is required to provide utility in practice.
The motivation for success remains strong, as establishing a
causal relationship between earthquakes and tsunamis remains
problematical, and this in turn complicates any ability to deliver
timely messaging that could prove life-critical.

I. MOTIVATION

The 26 December 2004 Indian Ocean earthquake produced

an absolutely devastating tsunami, whereas the 28 March 2005

earthquake did not [1], despite similarities in Richter-scale

magnitude and tectonic setting [2]. Much more recently, a

tsunami advisory was issued for coastal regions of Japan’s

southernmost island of Kyushu on 16 April 2016, following

a sizable earthquake [3]; 46 minutes later, and following

escalating interim updates, the advisory was (surprisingly)

lifted as the threat of a tsunami was no longer evident [4].

These events illustrate that the cause-effect relationship be-

tween earthquakes and tsunamis remains uncertain [5].1 Thus

the primary purpose here is to refactor earthquake-tsunami

causality as both a challenge and opportunity for mission-

critical Big Data Analytics - a refactoring that ultimately

results in more timely messaging (e.g., [8]).

After briefly reviewing the scientific context for earthquakes

and tsunamis in §II, the transformative inclusion of data

available from social media results in recasting earthquake-

tsunami causality as a problem in Big Data Analytics in §III

and §IV; conclusions follow in §V.

1Assuming the presence of an appropriately distributed array of deep-ocean
tsunami detection buoys and a forecasting model, however, far-field estimates
of tsunami propagation (pre-computed) and coastal inundation (real-time)
have proven to be extremely accurate (e.g., [6]). Dense, in situ tsunameter
networks also appear promising in tsunami forecasting through the real-time
assimilation of their data into tsunami wavefield models, without a need for
detailed earthquake source parameters [7].

II. THE SCIENCE AND ITS TRADITIONAL DATA

With bias towards whole-mantle convection [9], the context

provided for earthquakes by geophysical fluid dynamics can

be summarized as follows: The lithosphere (i.e., Earth’s crust)

comprises the upper thermal boundary layer of a convective

circulation that spans the full, ∼2900 km depth of Earth’s

mantle. The natural build up of stress in Earth’s mantle is

such that releases in the form of earthquakes occur primarily at

one of the three types of junctions between tectonic plates and

(less frequently) at epicentral locations interior to plates (e.g.,

[10]). Because thermal convection at conditions appropriate

for Earth’s mantle is nondeterministic, uncertainty is inherent

in any effort that aims to predict the hypocentric location of

an earthquake in space and time.2

Earth-based (e.g., gravimeters, seismometers, tidal gauges,

tsunameters) and remotely sensing (e.g., satellite altimeters

and GPS) scientific instruments comprise the primary sources

of objective data on earthquakes and tsunamis. While it is

certain that there is earthquake-tsunami data available from

numerous objective sources for corroborative analyses (e.g.,

joint inversions to elucidate earthquake parameters), the need

for Big Data Analytics is hardly pressing - in other words, Big

Data’s original three [13] to six [14] Vs are barely justifiable.

In the following section (§III), however, the inclusion of data

from social media completely disrupts this perspective and

does justify re-framing as a Big Data problem.

III. CREDIBLE DATA FROM TWITTER?

As Figure 1 indicates, a Perl script (e.g., Listing 1) can read-

ily extract geophysically relevant data (e.g., earthquake events

in Chile and Italy) via keyword matching [5]. The script,

however, also extracts instances of the keyword “earthquake”

that do not have any relevance in the geophysical context of

2Of course, in extremely well instrumented locales (e.g., parts of the San
Andreas Fault), measures of accumulated stress can reduce this uncertainty
somewhat. In the current tsunami-centric context for considering earthquakes,
however, oceanic-based tectonic settings impede the ongoing, in-situ monitor-
ing of stress-related measures. Remotely sensed crustal dynamics data, that
makes use of GPS technologies for example (e.g., [11], [12]), also has the
potential to monitor stress build up on an ongoing basis (even in oceanic
settings).



Created at: Wed Jun 04 20:29:33 +0000 2014

5.0 earthquake! Thu Jun 05 02:04:27 GMT+09:00 2014 near 84km SW of Iquique, Chile

http://t.co/mmFokGQWT7 #earthquake

Created at: Wed Jun 04 20:30:13 +0000 2014

The #earthquake continues: Latest via @Spectator_CH /@YouGov -#Labour 36 #Tories 32%, LD 8%,

#Ukip 14%. Implied Labour majority- 42 .

Created at: Wed Jun 04 20:31:35 +0000 2014

#terremoto ML 2.7 CENTRAL ITALY: Magnitude ML 2.7 Region CENTRAL ITALY Date time 2014-06-04

20:01:33.9 UTC... http://t.co/Y141Ovu6kP

Created at: Tue Jun 10 12:22:34 +0000 2014

RT @TheRock: Just wrapped a massive post earthquake scene for SAN ANDREAS. To the hundreds of

background actors/extras.. THANK U for all yo...

Fig. 1. Geophysically relevant and irrelevant tweets example after [5]. (Note that indents implied continued lines.)

earthquakes and tsunamis - e.g., the political and entertainment

references indicated in Figure 1.

At this point, it is instructive to conduct a ‘6V Test’ on the

tweets captured in Figure 1- i.e., assess the findings thus far

against the litmus test for Big Data’s 6Vs [14]:

• Volume Although the Figure 1 tweets span only a few

days, it is reasonable to expect that data volumes could be

substantial. For example, a significant earthquake could

generate data (almost) globally, as its impact is ‘felt’.

Significant earthquake events are typically accompanied

by aftershocks that could continue to generate tweets for

days or longer.

• Variety Other than the #earthquake hashtag used by

the Perl script (Listing 1), the data retrieved is various and

unstructured - in direct contrast to the constrained, semi-

structured scientific data [15] typical of the instruments

alluded to previously (§II). In addition to unstructured

text, through use of URLs, tweets encompass additional

variety through the inclusion of links; again, some of

these may be geophysically relevant - e.g., a photograph

may directly convey the draw-down of water on a beach

that precedes a tsunami [16], or through damage an

indirect indication of earthquake intensity.

• Velocity Significant events have the potential to ‘go viral’

in the Twittersphere. Clearly, in such cases, the rate at

which data is generated could be of considerable velocity.

Assuming it can be suitably extracted via calls to the

Twitter API, Twitter’s trending data could be particularly

useful in quantifying the velocity of earthquake-related

events.

• Veracity According to [14]: “Big Data Veracity refers to

the biases, noise and abnormality in data.” As the sample

presented in Figure 1 resoundingly demonstrates, this is a

pressing concern for any effort that seeks to ‘make sense’

of data extracted from Twitter. From a geophysical per-

spective, politically or entertainment-charged tweets are

rightly noise, whereas use of colloquialisms like “quake”

point to a much more subtle need for disambiguation.

• Validity As the name implies, validity is concerned with

matters such as accuracy and correctness. It is fair to

state that Lumb & Freemantle [5] placed most of their

emphasis on this aspect of the social networking data

typified by Twitter. As Gupta et al. [17] demonstrated,

‘faked photographs’ of natural disasters, are also within

the scope of validity.

• Volatility As social-networking services such as Snapchat

[18] (literally) illustrate, data can have a (very) finite

lifetime. Of course, the (inherent) volatility of social-

networking data is orthogonal to that of traditional scien-

tific data where ensuring preservation is a priority (e.g.,

[19]). Accessed in the June 2014 time frame, historical

streams of Twitter data dating back four years were

deemed to be quite valuable by Lumb & Freemantle [5].

In summarizing the ‘6V Test’ then, Twitter serves as a

tipping point in the present effort to ultimately elucidate

earthquake-tsunami causality, as it transforms an existing

scientific data problem into a Big Data problem.3

use Net : : T w i t t e r : : L i t e : : WithAPIv1 1 ;
my $ n t = Net : : T w i t t e r : : L i t e : : WithAPIv1 1−>new (

consumer key => ’ xxx . . . xxx ’ ,
c o n s u m e r s e c r e t => ’ xxx . . . xxx ’ ,
a c c e s s t o k e n => ’ xxx . . . xxx ’ ,
a c c e s s t o k e n s e c r e t => ’ xxx . . . xxx ’ ,
s s l => 1

) ;
my $ r e s u l t = $nt−>s e a r c h ( ” e a r t h q u a k e ” ) ;
f o r my $ s t a t u s (@{ $ r e s u l t −>{s t a t u s e s }} ) {

p r i n t ” $ s t a t u s −>{ t e x t }\n ” ;
}

Listing 1. A Perl script protoype that extracts keyword matches to the string
“earthquake” from streamed Twitter data via an API call [5]

Lumb & Freemantle [5] indicated that iterative processing

of data extracted from Twitter via Giraph [22] would lend

contextual credibility by ‘truthing’ tweets in time, location

and intensity; thus complementing the ‘inherent’ credibility

derived through of TweetCred [23]. Scoring, in this sense, is

depicted by the feedback loop in Figure 2. Ontologies can be

leveraged, for example, to disambiguate confusion amongst

terms - in other words, to express the semantic equivalence

between “earthquake” and “quake”. With additional semantic

context, ontologies are key to enabling the distinction between

geophysically inclined use of “earthquake” from other uses

3And as if the data deluge offered up by Twitter is not convincing enough,
there is considerably more objective data rapidly becoming available through
‘consumer seismometers’ such as MyShake - smart-phone software that makes
use of built-in accelerometers to detect and distinguish signals of potential
interest in real time [21].



Fig. 2. Iteratively enhanced via graph analytics involving Giraph, ‘more credible’ data extracted from Twitter populates a knowledge-representation framework
developed elsewhere ([15], [20]). Adapted from [5].

(e.g., political, or entertainment involving movies and gaming).

Thus Lumb & Freemantle [5] also sought to leverage a

previously developed framework for knowledge representation

[15] that would allow for the ingestion of discipline-specific

ontologies (e.g., from science alongside gaming and movies)

into a knowledge-representation model ultimately expressed

using Resource Description Framework Schema (RDFS) [24]

and/or OWL [25]. Credible data extracted from Twitter, as well

as scientific data (e.g., seismic data), would also be used to

populate this model. Because the model preserves relationships

represented as triples via the Resource Description Frame-

work (RDF) [26], the ultimate objective here is enhanced

earthquake-tsunami knowledge.

Although a knowledge-representation model for credible

tweets remains of interest in the current context of earthquakes

and tsunamis, the following section (§IV) introduces consid-

eration of another analytics approach that also appears to be

promising.

IV. DEEP LEARNING FROM SOCIAL MEDIA?

From the successful detection of geological faults in seismic

data [27], to support for full waveform inversion [28], to cost-

sensitive improvements in the productivity of unconventional

petroleum reservoirs [29], Machine Learning (e.g., [30]) is al-

ready delivering impressive results in exploration geophysics.

And these outcomes appear to reflect a groundswell of interest

in Machine Learning (e.g., [31]) that cuts across disciplinary

boundaries, but especially emphasizes ‘Deep Learning’ - “a

modern refinement of ‘machine learning’, in which computers

teach themselves tasks by crunching large sets of data” [32].

Of course, the idea of applying Machine Learning to data

extracted from social-media sources (such as Twitter) is not

a new one. And although even a hastily typed seach-engine

query will rapidly validate this point, it becomes quite clear

that considerable effort has been devoted to sentiment analysis

in the case of data extracted from Twitter (e.g., [33]).

Although there might ultimately be a benefit associated

with taking sentiments into account, attention was focused

on making use of support for Machine Learning in Apache

Spark ([34], [35]) to implement the well-established task of

classifying text (e.g., Example 11-1 of [36]) as follows:

1) Represent data Data extracted from Twitter (along the

lines of Figure 1) was manually curated into ‘ham’ (i.e.,

geophysically relevant tweets) and ‘spam’ (i.e., all other

tweets) for training purposes. The curated collections of

140-character ham and spam tweets were represented as

in-memory strings through use of Spark’s implementa-

tion of Resilient Distributed Datasets (RDDs) [37].

2) Extract features Using spaces as the delimiter, each

‘word’ of each tweet was represented numerically as a

‘feature’ for the purpose of Machine Learning. Thus,

RDDs of tweets were converted into vectors. By em-

phasizing the frequency with which a word was used,

MLlib’s HashingTF populates feature vectors.

3) Develop model object A model object was developed

next through application of a classification algorithm

to the vectorized features. Logistic regression via ML-

lib’s LogisticRegressionWithSGD (i.e., Stochas-

tic Gradient Descent, SGD) was used here for the

purpose of the classification algorithm.

4) Evaluate model Through use of a minimal set of strictly

curated tweets (i.e., only five ham and nine spam) from

2014, the model object was used to correctly evaluate

the 2016 tweet 2.1 magnitude #earthquake.

89km E of Bear Creek, Alaska

http://earthquaketrack.com/quakes/-

2016-05-03-01-54-15-utc-2-1-9 ... as

ham using a prediction capability built into MLlib.



Comprehensive experiments with classifying #earthquake

tweets via Machine Learning are currently underway, and

results will be reported elsewhere.

V. CONCLUSIONS

In the case of tsunamis, timely messaging is of indisputable

value [8]. Unfortunately, the ability to fully realize this service

operationally is hampered in theory (i.e., scientifically estab-

lished earthquake-tsunami causality, §II) and in practice (i.e.,

incomplete and uneven observations, §II). Subjective (e.g.,

Twitter) and objective (e.g., MyShake) data, from social-media

sources and citizen-science efforts, respectively, can augment

traditional datasets gathered using a wide variety of scientific

instruments (§III). By systematically improving the credibility

of data extracted from Twitter, for example, additional ob-

servations are rendered available (§III); beyond Twitter, other

prospects (e.g., Instagram [38]) exist for extracting data and

placing it through a credibility enhancing process.4 Although

past efforts employed a combination of graph analytics and

semantics, Machine Learning clearly requires serious con-

sideration (§IV). By ignoring the semantically rich content

of tweets (e.g., Twitter metadata such as IDs, hastags and

URLs) and offering no means for disambiguating semantically

equivalent terms (e.g., “earthquake” and “quake”), however, it

appears useful to employ Machine Learning in tandem with

knowledge representation via RDF and OWL. If ultimately

proven successful, approaches like this will certainly serve as

examples of mission-critical Big Data Analytics.
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