Data Science: Identifying My Professional Bias

Data Science: Identifying My Professional Bias

In the Summer of 1984, I arrived at Toronto’s York University as a graduate student in Physics & Astronomy. (Although my grad programme was Physics & Astronomy, my research emphasized the application of fluid dynamics to Earth’s deep interior.) Some time after that, I ran my first non-interactive computation on a cluster of VAX computers. I’m not sure if this was my first exposure to Distributed Computing or not not; I am, however, fairly certain that this was the first time it (Distributed Computing) registered with me as something exceedingly cool, and exceedingly powerful.

Even back in those days, armed with nothing more than a VT100 terminal ultimately connected to a serial interface on one of the VAXes, I could be logged in and able to submit a computational job that might run on some other VAX participating in the cluster. The implied connectedness, the innate ability to make use of compute cycles on some ‘remote’ system was intellectually intoxicating – and I wasn’t even doing any parallel computing (yet)!

More than a decade later, while serving in a staff role as a computer coordinator, I became involved in procuring a modest supercomputer for those members of York’s Faculty of Pure & Applied Science who made High Performance Computing (HPC) a critical component of their research. If memory serves me correctly, this exercise resulted in the purchase of a NUMA-architecture system from SGI powered by MIPS CPUs. Though isolated initially, and as a component of the overall solution, Platform LSF was included to manage the computational workloads that would soon consume the resources of this SGI system.

The more I learned about Platform LSF, the more I was smitten by the promise and reality of Distributed Computing – a capability to be leveraged from a resource-centric perspective with this Load Sharing Facility (LSF). [Expletive deleted], Platform founder Songnian Zhou expressed the ramifications of his technical vision for this software as Utopia in a 1993 publication. Although buying the company wasn’t an option, I did manage to be hired by Platform, and work there in various roles for about seven-and-a-half years.

Between my time at Platform (now an IBM company) and much-more recently Univa, over a decade of my professional experience has been spent focused on managing workloads in Distributed Computing environments. From a small handful of VAXes, to core counts that have reached 7 figures, these environments have included clusters, grids and clouds.

My professional bias towards Distributed Computing was further enhanced through the experience of being employed by two software vendors who emphasized the management of clusters – namely Scali (Scali Manage) and subsequently Bright Computing (Bright Cluster Manager). Along with Univa (Project Tortuga and Navops Launch), Bright extended their reach to the management of HPC resources in various cloud configurations.

If it wasn’t for a technical role at Allinea (subsequently acquired by ARM), I might have ended up ‘stuck in the middle’ of the computational stack – as workload and cluster management is regarded by the HPC community (at least) as middleware … software that exists between the operating environment (i.e., the compute node and its operating system) and the toolchain (e.g., binaries, libraries) that ultimately support applications and end users (e.g., Figure 5 here).

Allinea’s focuses on tools to enable HPC developers. Although they were in the process of broadening their product portfolio to include a profiling capability around the time of my departure, in my tenure there the emphasis was on a debugger – a debugger capable of handling code targeted for (you guessed it) Distributed Computing environments.

Things always seemed so much bigger when we were children. Whereas Kid Ian was impressed by a three-node VAX cluster, and later ‘blown away’ by a modest NUMA-architecture ‘supercomputer’, Adult Ian had the express privilege of running Allinea DDT on some of the largest supercomputers on the planet (at the time) – tracking down a bug that only showed up when more than 20K cores were used in parallel on one of Argonne’s Blue Genes, and demonstrating scalable, parallel debugging during a tutorial on some 700K cores of NCSA’s Blue Waters supercomputer. In hindsight, I can’t help but feel humbled by this impressive capability of Allinea DDT to scale to these extremes. Because HPC’s appetite for scale has extended beyond tera and petascale capabilities, and is eyeing seriously the demand to perform at the exascale, software like Allinea DDT needs also to match this penchant for extremely extreme scale.

At this point, suffice it to say that scalable Distributed Computing has been firmly encoded into my professional DNA. As with my scientifically based academic bias, it’s difficult not to frame my predisposition towards Distributed Computing in a positive light within the current context of Data Science. Briefly, it’s a common experience for the transition from prototype-to-production to include the introduction of Distributed Computing – if not only to merely execute applications and/or their workflows on more powerful computers, but perhaps to simultaneously scale these in parallel.

I anticipate the need to return to this disclosure regarding the professional bias I bring to Data Science. For now though, calling out the highly influential impact Distributed Computing has had on my personal trajectory, appears warranted within the context of my Data Science Portfolio.

Incorporate the Cloud into Existing IT Infrastructure => Progress ( Life Sciences )

I still have lots to share after recently attending Bio-IT World in  Boston … The latest comes as a Bright Computing contributed article to the April 2013 issue of the IEEE Life Sciences Newsletter.

The upshot of this article is:

Progress in the Life Sciences demands extension of IT infrastructure from the ground into the cloud.

Feel free to respond here with your comments.

Over “On the Bright side …” Cloud Use Cases from Bio-IT World

As some of you know, I’ve recently joined Bright Computing.

Last week, I attended Bio-IT World 2013 in Boston. Bright had an excellent show – lots of great conversations, and even an award!

During numerous conversations, the notion of extending on-site IT infrastructure into the cloud was raised. Bright has an excellent solution for this.

What also emerged during the conversations were two uses for this extension of local IT resources via the cloud. I thought this was worth capturing and sharing. You can read about the use cases I identified over “On the Bright side …

April’s Contributions on Bright Hub

In April, I contributed two articles to the Web Development channel over on Bright Hub:

Recent Articles on Bright Hub

I’ve added a few more articles over on Bright Hub:

Google Chrome for Linux on Bright Hub: Series Expanded

I recently posted on a new article series on Google Chrome for Linux that I’ve been developing over on Bright Hub. My exploration has turned out to be more engaging than I anticipated! At the moment, there are six articles in the series:

I anticipate a few more …

It’s also important to share that Google Chrome for Linux does not yet exist as an end-user application. Under the auspices of the Chromium Project, however, there is a significant amount of work underway. And because this work is taking place out in the open (Chromiun is an Open Source Project), now is an excellent time to engage – especially for serious enthusiasts.

Google Chrome for Linux Articles on Bright Hub

I’ve recently started an article series over on Bright Hub. The theme of the series is Google Chrome for Linux, and the series blurb states:

Google Chrome is shaking up the status quo for Web browsers. This series explores and expounds Chrome as it evolves for the Linux platform.

So far, there are the following three articles in the series:

I intend to add more … and hope you’ll drop by to read the articles.