Developing Your Expertise in Machine Learning: Podcasts for Breadth vs. Depth

From ad hoc to highly professional, there’s no shortage of resources when it comes to learning Machine Learning. Not only should podcasts be blatantly regarded as both viable and valuable resources, the two I cover in this post present opportunities for improving your breadth and/or depth in Machine Learning.

Machine Learning Guide

As a component of his own process for ramping up his knowledge and skills in the area of Machine Learning, OCDevel’s Tyler Renelle has developed an impressive resource of some 30 podcasts. Through this collection of episodes, Tyler’s is primarily a breadth play when it comes to the matter of learning Machine Learning, though he alludes to depth as well in how he positions his podcasts:

Where your other resources provide the machine learning trees, I provide the forest. Consider me your syllabus. At the end of every episode I provide high-quality curated resources for learning each episode’s details.

As I expect you’ll agree, with Tyler’s Guide, the purely audio medium of podcasting permits the breadth of Machine Learning to be communicated extremely effectively; in his own words, Tyler states:

Audio may seem inferior, but it’s a great supplement during exercise/commute/chores.

I couldn’t agree more. Even from the earliest of those episodes in this series, Tyler demonstrates the viability and value of this medium. In my opinion, he is particularly effective for at least three reasons:

  1. Repetition – Extremely important in any learning process, regardless of the medium, repetition is critical when podcasting is employed as a tool for learning.
  2. Analogies – Again, useful in learning regardless of the medium involved, yet extremely so in the case of podcasting. Imagine effective, simple, highly visual and sometimes fun analogies being introduced to explain, for example, a particular algorithm for Machine Learning.
  3. Enthusiasm – Perhaps a no-brainer, but enthusiasm serves to captivate interest and motivate action.

As someone who’s listened to each and every one of those 30 or so episodes, I can state with some assuredness that: We are truly fortunate that Tyler has expended the extra effort to share what he has learned in the hope that it’ll also help others. The quality of the Guide is excellent. If anything, I recall occasionally taking exception to some of the mathematical details related by Tyler. Because Tyler approaches this Guide from the perspective of an experienced developer, lapses mathematical in nature are extremely minor, and certainly do not detract from the overall value of the podcast.

After sharing his Guide, Tyler started up Machine Learning Applied:

an exclusive podcast series on practical/applied tech side of the same. Smaller, more frequent episodes.

Unfortunately, with only six episodes starting from May 2018, and none since mid-July, this more-applied series hasn’t yet achieved the stature of its predecessor. I share this more as a statement of fact than criticism, as sustaining the momentum to deliver such involved content on a regular cadence is not achieved without considerable effort – and, let’s be realistic, more than just a promise of monetization.

This Week in Machine Learning and AI

Whereas OCDevel’s Guide manifests itself as a one-person, breadth play, This Week in Machine Learning and AI (TWiML&AI) exploits the interview format in probing for depth. Built upon the seemingly tireless efforts of knowledgeable and skilled interviewer Sam Charrington, TWiML&AI podcasts allow those at the forefront of Machine Learning to share the details of their work – whether that translates to their R&D projects, business ventures or some combination thereof.

Like Tyler Renelle, Sam has a welcoming and nurturing style that allows him to ensure his guests are audience-centric in their responses – even if that means an episode is tagged with a ‘geek alert’ for those conversations that include mathematical details, for example. As someone who engages in original research in Machine Learning, I have learned a lot from TWiML&AI. Specifically, after listening to a number of episodes, I’ve followed up on show notes by delving a little deeper into something that sounded interesting; and on more than a few occasions, I’ve unearthed something of value for those projects I’m working on. Though Sam has interviewed some of the most well known in this rapidly evolving field, it is truly wonderful that TWiML&AI serves as an equal-opportunity platform – a platform that allows voices that might otherwise be marginalized to also be heard.

At this point, Sam and his team at TWIML&AI have developed a community around the podcast. The opportunity for deeper interaction exists through meetups, for example – meetups that have ranged from focused discussion on a particularly impactful research paper, to a facilitated study group in support of a course. In addition to all of this online activity, Sam and his team participate actively in a plethora of events, and have even been known to host events in person as well.

One last thought regarding TWiML&AI: The team here takes significant effort to ensure that each of the 185 episodes (and counting!) is well documented. While this is extremely useful, I urge you not to merely make your decision on what to listen to based upon teasers and notes alone. Stated differently, I can relate countless examples for which I perceived a very low level of interest prior to actually listening to an episode, only to be both surprised and delighted when I did. As I recall well my from my running days, run for that first kilometre or so (0.6214 of a mile 😉 ) before you make the decision as to how far you’ll run that day.

From the understandably predictable essentials of breadth, to the sometimes surprising and delightful details of depth, these two podcasts well illustrate the complementarity between the schools of breadth and depth. Based upon my experience, you’ll be well served by taking in both of these podcasts – whether you need to jumpstart or engage-in-continuous learning. Have a listen.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s